

Importance of Conductive Footwear

Conductive footwear rapidly discharges static electricity from the body to the ground, eliminating the risk of ignition. This is crucial for personnel working in high-risk areas like ATEX Zones 0, 1, and 2. The safety of personnel working in industrial environments is directly related to the quality of equipment and personal protective gear used. In ATEX zones containing explosive gases, vapors or dusts, static electricity accumulation can lead to life-threatening risks.

Why Rocksie?

Rocksie enhances your industrial safety with its ATEX-compliant product range. The CD-101 model stands out not only for its technical performance but also for its durability, comfort, and modern design.

Compliance with ATEX Directive

The ATEX Directive 2014/34/EU of the European Union states that equipment and protective systems used in explosive atmospheres must be safe against static electricity.

Accordingly:

- PPE must be designed to prevent electrostatic charge accumulation.
- Conductive shoes ensure discharge at resistance levels below 100 kΩ, making them suitable for ATEX zones.

Technical Specifications

What's E-TPU?

ETPU (Expanded Thermoplastic Polyurethane) is a high-performance material used in both safety and sports footwear. It offers superior shock absorption, energy return, and flexibility. The expanded TPU beads create a springy and durable midsole for all-day comfort and performance.

Comparison

Feature /	Antistatic	ESD	Conductive
Resistance /	100 kΩ - 1000 MΩ	100 kΩ - 100 MΩ	< 100 kΩ
Purpose /	To reduce and prevent static build-up on the body. Provides basic protection	To protect sensitive electronic components from static electricity. Provides slow, controlled discharge.	To rapidly discharge all static electricity to the ground. Prevents spark risks in explosive environments

Application Areas

Rocket fuel production plants. Drone assembly and repair labs Gunpowder and ammunition factories Chemical and solvent manufacturing plants Hazardous material storage areas

	Safety Shoes	accor	ding t	o EN	ISO	2034	5:202	2				1	-	M	٨
SYMBOL	REQUIREMENT	SB	S1	S2	S3	S3L	sas	S6	S7	S7L	S7S				
10.	Basic requirements	1	V	1	1	1	1	1	1	V	✓		3	П	
•4	Slip resistance on ceramic tile floors with NaLS	. 🗸	V	1	✓.	1	1	V	1	V	1	Ē,		-	
	closed seat region	0	√	✓.	V	1	V	V	1	V	V.	1	H: 100		
A	antistatic properties	0	✓	V	/	V	1	V		V	W	//_	第21-1		100
E	energy absorption of seat region	0	V	V	√	V	V	V	V	1	V	KA L	Direction of the last	12	
WPA	Water penetration and absorption	0	0	1	1	/	1	VA	V	Ż	1	H			
Р	Penetration resistance: metal insert	0	0	0	1		-	0	√						
PL	Penetration resistance: non-metal insert 4,5 mm nail	0	0	0		1		0	-	1					
PS	Penetration resistance: non-metal insert 3,0 mm nail	0	0	0			1	0	-	-	1				
	Conductivity	0	1	1	1	1	1	1	1	1	1				